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ABSTRACT - The main goal of this work is to assess, through realistic 
computational simulations, the attainable real time accuracy provided by single 
frequency GPS receivers when determining orbits of artificial satellites. A simplified 
and compact algorithm with low computational burden aiming accuracies around 
tens of meters for orbit determination using the GPS is developed. To validate the 
procedure, real data of the Topex/Poseidon satellite were used. For several test 
cases, the real-time position and velocity errors were ranging between 15 to 20 m 
and 0.014 to 0.018 m/s along a day, respectively, either with or without Selective 
Availability (SA).  
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INTRODUCTION 

With the advances of technology, nowadays the single frequency GPS (Global Positioning System) receivers 
provide a good basis to achieve fair precision at relatively low cost in the orbit determination of artificial 
satellites. The main goal of this work is to test, through realistic computational simulations, the real time 
attainable accuracy provided by such a receiver when determining orbits of artificial satellites.  

Within this scope, a simplified and compact algorithm with low computational burden providing an accuracy 
around tens of meters for artificial satellite orbit determination in real-time, using the GPS, is developed. This 
accuracy level is enough for satellites to navigate autonomously and may be used to compute onboard correction 
orbit maneuvers [1]. 

 

 



DESCRIPTION OF ALGORITHM 

A state vector with a minimum set of solve-for variables namely, the position and velocity components, bias, 
drift and drift rate of the GPS receiver clock, is estimated by a non-linear extended Kalman filter. The 
coefficients that represent the bias, drift, and drift rate of the GPS receiver clock are estimated as parameters. 
The simple fourth order Runge-Kutta numerical integrator is used to integrate stepwise the differential equations 
of motion. Several studies are developed including different numerical integration schemes, Runge-Kuttas of 
different orders, step size magnitudes, and geopotential harmonic model truncations. In these studies, the 
equations of motion accounting only for the perturbations due to the geopotential up to 10th order and degree of 
the JGM-2 model harmonic coefficients have been enough to achieve the accuracy of tens of meters. On the 
other hand, the state error covariance matrix is propagated through the transition matrix, which is calculated in 
an optimized analytical way. Within a single integration step, only the two-body Keplerian motion is considered 
to compute the transition matrix. The single frequency GPS pseudo-range measurements in L1 frequency are 
used as observation ones. The measurements are corrected for GPS satellite and receiver clocks offsets, 
relativistic effect, and travel time. 

Preliminary studies were carried out to check the impact of the ionospheric effect as well as the non-inclusion of 
J2 effect in the transition matrix in the estimated orbit accuracy. It could be concluded that the ionospheric effect 
could be neglected for satellites with altitudes above 1000 km from the Earth. The analytical J2 effect inclusion 
in the transition matrix did not provide meaningfully better results when precision versus processing time is 
analyzed. Such studies yielded the support to the simplified models adopted in this work. 

 

Force Model and Numerical Integration  

To choose a simplified force model adopted in this work, the following factors were considered: generality, orbit 
accuracy and computational cost for orbit determination in an onboard real time environment. Therefore, only 
forces due to the Earth gravitational field were implemented.  

The considered harmonic coefficients of the Earth’s geopotential field are set up to order and degree 10 of JGM-
2 model according to studies developed in [2], without overloading the processing time. 

The acceleration and the related partial derivatives matrix are computed through the recurrence relations 
according to [3] in Earth-fixed (EF) coordinates. The coordinates transformation from True of Date (ToD) to 
Pseudo-Earth fixed equator and prime meridian (PEF) takes into account the Earth sideral rotation, but the polar 
motion is neglected in this work. 

The integration of the satellite’s motion equation is performed using the simple 4th order Runge-Kutta (RK4) 
algorithm. This algorithm is implemented without any mechanism of step adjustment or error control. The RK4 
is considered an adequate numerical integrator due to its simplicity, fair accuracy, low truncation error, and low 
computational burden. An initialization procedure is not necessary and the step size is quite easy to change. The 
30-second integration step interval is used throughout.  

 

Measurement Model 

Only the code pseudorange in L1 frequency is used to determine the satellite orbit providing the accuracy 
required by a mission as in this work. The considered errors in the code pseudorange measurements are the GPS 
satellite and receiver clock offsets. Refs. [4] and [2] studied the need of considering the ionospheric correction 
model. It has been concluded that the ionospheric effect (around 3-6 meters) does not affect significantly the 
final accuracy of the orbit. In this way, it will be neglected once the goal is not to achieve high precision (around 
centimeters). In high precision and onboard applications, some ionospheric correction for single frequency 
should be applied, but this may add some complexity if we need to implement a better ionospheric model.  

The equation of the code pseudorange in L1 frequency is given by: 
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where cρ  is the code pseudorange in L1, c is the vacuum speed of light, ∆tGPS is the GPS satellite clock offset, 
∆tu is the receiver clock offset, t is the observation instant in GPS time, and ρ is the geometric range given by: 
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where x, y, and z are the positional states of the user satellite at the reception time (in GPS time) and xGPS, yGPS, 
and zGPS are the positional states of the GPS satellite at the transmission time (in GPS time), corrected for light 
time delay.  

The second term on the right side of the Eq. (1) is the clock bias that represents the combined clock offsets of the 
satellite and of the receiver with respect to the GPS time. Each GPS satellite contributes with one clock bias. The 
information for the GPS satellite clocks is known and transmitted via the navigation message in the form of three 
polynomial coefficients with a reference time toc. The clock correction of the GPS satellite for the epoch t is: 
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where tGPS is the spacecraft code phase time at the message transmission time in seconds; af0,, af1, and af2 are 
bias, drift, and drift rate of GPS satellite clock, respectively; toc is the reference time, in seconds, measured from 
the GPS time weekly epoch; δR is a small relativistic correction of the GPS satellite clock caused by the orbital 
eccentricity e; a is the semi-major axis of the orbit; µ is the Earth’s gravitational constant; and E is the eccentric 
anomaly.  

The relativistic effect is included in the clock polynomial broadcast via the navigation message, where the time 
dependent eccentric anomaly E is expanded into a Taylor series. If a more accurate equation is required, the 
relativistic effects must be subtracted from the clock polynomial coefficients. The polynomial coefficient af0, af1, 
and af2 are transmitted in units of sec, sec/sec, and sec/sec2, respectively. The clock data reference time toc is also 
broadcast. The value of tGPS must account for the beginning or the end-of-week crossovers. The user may 
approximate t by tGPS in Eq. (3). The user clock offset is part of the estimated state vector given by [5]: 
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where b0,, b1 and b2 are the bias, drift, and drift rate of the user clock, and ∆T is the elapsed time since the instant 
of the first measurement. The relativistic effect in the user clock is calculated by using the best available 
estimated state vector in the epoch. 

 

GPS Travel and Reception Times  

The computation of the geometric range, ρ, is required for both pseudorange and carrier phase processing. The 
GPS position coordinates are used at the instant of emission. However, the reception time is used to compute it. 
Then, this time is corrected subtracting the travel time of signal to obtain the emission time. Therefore the travel 
time is computed through an iterative process that starts assuming an average value for the travel time τ. Next, 
the GPS position for the epoch (t - τ) is interpolated and then, the geometric range is computed, which can be 
used to reconstruct the travel time by [6]: 



c
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The light-time iteration is usually performed in an inertial system with position vector x = (x, y, z) and the GPS 
satellite position vector xGPS = (xGPS, yGPS, zGPS). Therefore the positions from inertial to the Earth-fixed WGS84 
system or vice-versa are needed. So, the signal path is given as [7]:  
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where RWGS is the rotation matrix from inertial to Earth-fixed WGS-84 system. Making use of the approximation 
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where ωe is the Earth’s rotation rate, the inertial position of the GPS satellite may be substituted by the 
corresponding Earth-fixed position: 
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This yields 
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in the Earth-fixed reference frame. 

If the discrepancy between the first and second approximation of τ is greater than a specified criterion, the 
iteration is repeated, i.e., a new satellite position is interpolated and a new distance is computed, and so on. 
Generally, a couple of iterations are sufficient.  

This computation is not affected by the receiver clock error ∆tu and the satellite clock error ∆tsv. However, the 
ionosphere troposphere, hardware, and multipath corrupt the computed nominal emission time. All of these 
effects are neglected in the present context. The same process corrects the reception time as well.  

 

Estimation Technique 

The standard Kalman filter algorithm is used to estimate the spacecraft orbit onboard. This filter is robust, with 
easy implementation for application in real-time, not requiring iteration on the data collected previously, and 
being able to provide the current orbit in real time.  

The extended Kalman filter is a version applicable to non-linear problems and is composed by time-update and 
measurement-update cycles. The time-update phase updates the state and the covariance matrix along the time 
using the dynamical equations.  

In this work, the estimated state vector is given by: 
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where  and  are the spacecraft's position and velocity vectors, b , where bT(x,y,z)=r Tzyx ),,( &&&=v T
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b1, b2 are bias, drift, and drift rate of the receiver clock, respectively, and t is the instant of integration. All 
coordinates refer to the ToD (True of Date) system.  

The used algorithm can be found in [8-9]. The details of implementation can be found in [10].  

The state error covariance matrix is propagated through the transition matrix. The conventional filter is 
implemented calculating only the upper triangular part of the state error covariance matrix. The other elements 
are obtained imposing symmetry to the matrix. The lack of symmetry is one of the highest sources of truncation 
error per Kalman filter cycle [11].   



One method to avoid the problem of the high computational cost and the extended analytical expressions of the 
transition matrix consists of propagating the state vector using the complete force model and, then, to compute 
the transition matrix using a simplified force model. The analytical calculation of the transition matrix of the 
Keplerian motion is a reasonable approximation when only short time intervals of the observations and reference 
instant are involved [12]. On the other hand, the inclusion of the J2 (Earth flattening) effect in the transition 
matrix can be done approximately adopting the Markley’s method [13].  

Ref. [2] studied these two methods. The methods were evaluated according to accuracy, processing time, and 
handling complexity of the equations for two kinds of orbits. It has been concluded that the analytical Keplerian 
motion model, which was developed in [12], is still a better-suited force model to be adopted in the evaluation of 
a general-purpose state transition matrix. 

 

SIMULATIONS 

In order to test under realistic conditions the algorithm, the data of the Topex/Poseidon (T/P) satellite is used. 
This satellite carries a dual frequency receiver GPS onboard experimentally to test the ability of the GPS to 
provide precise orbit determination (POD).The following files are used:  

• The T/P observation files that broadcast the code and carrier pseudoranges measurements in two frequencies 
in 10-second GPS time steps and are provided by GPS Data Processing Facility of the Jet Propulsion 
Laboratory (NASA) in Rinex II ASC format; 

• The T/P Precise Orbit Ephemeris (POE) files that are generated by the Jet Propulsion Laboratory (JPL) in 
one minute UTC (Universal Coordinated Time) time steps in the Inertial True of Date coordinates; and 

• The broadcast GPS navigation message file in Rinex II ASC format provided by Crustal Dynamics Data 
Information System (CDDIS) of the Goddard Space Flight Center (NASA). 

The position and velocity estimates provided by the algorithm are compared against the T/P POE. The T/P POE 
is claimed to estimate T/P position with accuracy better than 15 cm. The states in the POE are provided in one 
minute UTC time steps in ToD coordinates. But, the T/P GPS measurements are provided in 10 seconds of GPS 
time. According to IERS (International Earth Reference System), the difference between the UTC and GPS time 
is approximately an integer number of seconds, increasing timely with the introduction of leap seconds. For 
example, for 1993, the difference was 9 seconds.  

However, in the process of the orbit determination, the state is estimated in 30-second intervals in UTC time 
with transmission and reception time correction. As a consequence, these data instants are not coincident. 
Therefore, it was necessary to interpolate the states through an interpolation (Polint) subroutine [14]. With this 
approach, the mean errors of the interpolated states are 0.068 m and 2.5 × 10-4 m/s for position and velocity, 
respectively, which does not add any significant bias to the accuracy evaluation of the results. 

Some parameters to be used in evaluating of algorithm in the tests were defined. The actual position error is 
given by:  
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where xi and , i = 1,2,3, are the components of the reference (POE) and estimated position vectors, 
respectively. The estimated position error is given by:  
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where Pii, i = 1,2,3, represents the values of diagonal elements of the state error covariance matrix corresponding 
to position components. The actual velocity error is given by: 
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where xi and , i = 4,5,6, are the components of the reference (POE) and estimated velocity vectors, 
respectively. The estimated velocity error is given by:  
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where Pii, i = 4,5,6, represents the values of diagonal elements of the state error covariance matrix for the 
velocity components. And, the residual is given by: 
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where z e ρc are the observed and calculated pseudorange measurements, respectively.  

The algorithm is analyzed and tested using 8 complete days of data. Figs. 1 and 2 show the real and filtered 
position and velocity errors in m and m/s, with SA (Selective Availability) off and on, respectively. These 
figures show the results for a typical day of filtering. Fig. 3 shows the typical behavior of the pseudorange 
residuals for all tests. Figs. 4 and 5 show the histogram and normal distribution of the residuals. Table 1 shows 
the statistical errors for position and velocity vectors as well as the residual for all tests 

It can be noted that, for all the days tested, the real position and velocity errors are less than the estimated 
position and velocity errors by the filter. It shows the conservative behavior of the filter. In all cases, the filtering 
takes around one hour to stabilize the covariance and the error. The position accuracy with SA off (11/18/1993 
and 11/19/1993) or on (other days) is from 15 to 20 m with standard deviation from 6 to 10 m. And the velocity 
accuracy is from 0.014 to 0.018 m/s with standard deviation from 0.006 to 0.009 m/s, as shown in Table 1.  

Through Figs. 4 and 5 and Table 1, it can be noted that the residuals present normal distribution with mean zero 
and standard deviation around 23 m, except for days 18-19. In November 18th and 19th 1993, the SA was off and 
the standard deviation of the residuals was down to around 13.3 m. This fact shows how SA affects the statistics 
of the residuals, although the state estimates does not show significant degradation.  

 

CONCLUSIONS 

The main goal of this work was to achieve accuracy around tens of meters along with minimum computational 
cost when determining, in real time, artificial satellite orbits, considering an onboard simplified model. To 
develop it, the single frequency GPS measurements are modelled, considering the effects of the clock offsets of 
the GPS and user satellites, and user relativistic effects. 

The algorithm was tested with real data from a satellite with GPS receiver onboard. The satellite orbit is 
estimated using the developed algorithm with a good accuracy and at low computational burden. The algorithm 
uses a large 30 seconds step-size of propagation (10 second step-size can be used as well), the geopotential 
model up to order and degree 10, and the analytical computation of the transition matrix considering the 
Keplerian motion. The obtained position accuracy is better than 20 m with either SA on or off. The results were 
considered statistically consistent and the tunned Kalman filter behaved as expected.  
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Fig. 1 - Estimated and real position error with SA off 
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Fig. 2 - Estimated and real position error with SA on 
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Fig. 3 - Typical behavior of the residuals 
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Fig. 4 - Histogram of the residuals 
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Fig. 5 - Normal distribution of the residuals 



TABLE 1 - STATISTICAL ERRORS WITH SA ON OR OFF  

DATE 

MM/DD/YYYY  
∆r  

(m) 

∆v  

(m) 

RESIDUALS  

(m) 

11/18/1993 15.5 ± 6,8 0.014 ± 0.006 0.027 ± 13.2 

11/19/1993 17.4 ± 6.7 0.016 ± 0.006 -0.13 ± 13.4 

11/20/1993 17.6 ± 8.4 0.017 ± 0.007 -0.16 ± 22.6 

01/03/1994 16.5 ± 8.5 0.015 ± 0.008 0.004 ± 22.1 

01/04/1994 19.5 ± 9.6 0.018 ± 0.009 -0.16 ± 22.8 

01/05/1994 19.6 ± 7.8 0.018 ± 0.008 0.04 ± 22.9 

01/21/1994 19.0 ± 7.7 0.018 ± 0.008 -0.05 ± 23.9 

01/22/1994 16.5 ± 8.6 0.015 ± 0.008 -0.007 ± 23.3 
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